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Supplementary Data 1. Most likely genome structure for the Malaysian yeast strain after 3 

47,880 iterations  4 

This file generated by GRAAL recapitulates the correspondence between the genome used for the 5 

initialization of GRAAL and the most likely genomic structure recovered at the end of the 6 

process. Superscaffolds generated by GRAAL are indicated in the first column, with the 7 

corresponding bin from the original genome indicated below each superscaffold under the 8 

“init_published_scaffold” label. The index, orientation, and initial coordinates of each bin within 9 

the initial genome sequence are also indicated.  10 

 11 

Supplementary Data 2. Most likely genome structure for the T. reesei strain QM6A after 12 

31,920 iterations 13 

This file generated by GRAAL recapitulates the correspondence between the genome used for 14 

initializing the algorithm and the most likely genomic structure recovered. Superscaffolds 15 

generated by GRAAL are indicated in the first column, with the corresponding “bin” from the 16 

original genome indicated below each superscaffold under the “init_published_scaffold” label. 17 

The index, orientation, and initial coordinates within the initial genome sequence are also 18 

indicated.  19 

 20 

Supplementary Data 3. Fasta file of the most likely genome structure of the UWOPS03-21 

461.4 Malaysian yeast strain after 47,880 iterations 22 

 23 

Supplementary Data 4. Fasta file of the most likely genome structure of the T. reesei strain 24 

QM6A after 31,920 iterations 25 

 26 



Supplementary Data 5. List of the 2,917 de novo contigs of chromosome 14 from sequencing 27 

libraries downloaded from the GAGE competition website used for initializing GRAAL. 28 

 29 

Supplementary Data 6. List of the 8,382 bins generated from these 2,917 contigs from 30 

Supplementary Data 5.  31 

 32 

  33 



 34 

Supplementary Figure 1: Assembly of virtual S. cerevisiae contigs using Lachesis
1
 and dnaTri

2
. 35 

(a) Example of inaccurate clustering by Lachesis, starting with the set of bins assembled by 36 

GRAAL in Fig. 2. Two large chromosomal segments of chromosome 13 were attributed to 37 

clusters 10 and 15, whereas two small regions of the same chromosome were incorporated in 38 

clusters 0 and 2 (red arrowheads). (b) Example of inaccurate clustering by Lachesis of small 39 

chromosomes 1, 3, and 6 into a single cluster. Note that although the 95% of the bins are 40 

correctly aligned with respect to their neighbors, this measure does not reflect the overall quality 41 

of the assembly. (c) dnaTri also fails to retrieve the correct number of yeast chromosomes when 42 

applied to yeast contact data. Both plots were generated by dnaTri. The left plot shows the 43 

average clustering step length as function of the number of clusters tested (see Figure 3a of the 44 

dnaTri paper
2
). The number of clusters chosen by dnaTri corresponds to the maximum of this 45 



graph and in this case equals 2 instead of the expected number of 16 chromosomes. The right plot 46 

shows the assignment of contigs from the 16 chromosomes to clusters, revealing that the vast 47 

majority was incorrectly grouped into a single cluster. 48 

49 



 50 

Supplementary Figure 2: Distribution of the error rate for sets of randomly down-sampled 3C 51 

dataset (from 1X to 0.001X for the S. cerevisiae matrix containing 21,457,486 contacts). The x-52 

axis represents the error rate in log scale. For each down-sampled dataset, 15,000 iterations were 53 

performed. 54 

  55 

  56 



57 
  58 

Supplementary Figure 3: Evolution of the parameters of the model (a) The slope reflects the 59 

intrachromosomal contact frequencies as a function of genomic separation (i.e. nuisance 60 

parameter b in the model; Material and Methods), repeatedly revisited over the 50,000 iterations 61 

in light of contact data. (b) Dist_max_intra represent the threshold, in kb, allowing discrimination 62 

between intra- and inter-chromosomal contacts, with inter-chromosomal frequencies assumed 63 

constant, corresponding to nuisance parameter   . Both the slope and the Dist_max_intra values 64 

are repeatedly reassessed based on the 3D data, fluctuating around an average value (μ), as 65 

illustrated by the close-ups (red (red dotted squares) on each curve.  (c) Evolution of the 66 

likelihood and the number of contigs as function of the number of iterations. 67 

  68 
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 73 

 74 

Supplementary Figure 4:  Overview of the GRAAL algorithm. 75 

 76 

  77 



Supplementary Table 1. Features of three genome assembly algorithms based on 3D contact 78 
data 79 
  80 

Feature GRAAL Lachesis1 dnaTri2 

Predicts number of 
chromosomes 

Yes No Yes 

Corrects automatically initial 
misassemblies  

Yes No No* 

Orients contigs Yes Yes No 

Identifies repeated regions Yes No No 

Estimates assembly 
uniqueness 

Yes No No** 

 81 
* not directly: the user can still cut the initializing contigs before the clustering step 82 

** the probabilistic framework of the dnaTri algorithm is very elegant and allows it to estimate 83 

the likelihood of the structure, but, as acknowledged by the authors, there is no guarantee on the 84 

global optimum of the solution.  85 

 86 

 87 

Supplementary Table 2: Sequencing adapters used in this study  88 

oligos sequence library 

MM70 GTANNNNNNAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAG 
Malaysian yeast strain 

MM71 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNTACT 

MM182 TCTNNNNNNAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAG 
YKF1246 yeast strain 

MM183 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNAGAT 

MM106 TGGNNNNNNAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAG 
QM6a T. reesei strain 

MM107 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNCCAT 

MM108 CCANNNNNNAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAG 
E. histolytica strain 

MM109 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNTGGT 

  89 

 90 



 91 

 92 

Supplementary Table 3. Summary of the initialization parameters for the different analysis 93 

Dataset enzyme nb of bins n contacts Mean nb of 

RFs per bin 

mean bin 

size (kb) 

S. cerevisiae  DnpII 1086 21457086 27 11 

Trichoderma reesei QM6a DnpII 1193 15014468 27 27,9 

YKF1246 S.c. strain DnpII 1295 21830579 27 9,5 

Malaysian S.c. strain DnpII 3136 8353283 9 3,8 

Human chr7/17/19/22 HindIII 3607 19672219 9 95,9 

Human de novo chr14  HindIII 8382 1156115 3 8,8 

 94 

 95 

 96 

  97 



Supplementary Method 98 

 99 

The following provides a more detailed description of the algorithm implemented in GRAAL. 100 

 101 

The description of GRAAL can be divided into two main components: (i) the probabilistic model 102 

that assigns a likelihood to a given linear (one-dimensional) genome structure given a specific 103 

contact/Hi-C data set, and (ii) the sampling algorithm used to explore the space of linear genome 104 

structures (and nuisance parameters).  105 

 106 

A. Probabilistic model 107 

 108 

A.1. Bayesian inference approach: 109 

We consider the genome assembly problem as a Bayesian inference problem, taking inspiration 110 

from previous work in protein structure determination
3
. In its simplest form, the Bayes rule reads: 111 

 (   )   (   ) ( ) 

where G denotes the linear genome structure to be determined, D is the Hi-C data set (both will 112 

be defined more precisely below),  (   ) is the probability density of A conditioned on B, and   113 

indicates proportionality. Our goal is to determine, or at least approximate, the posterior 114 

probability  (   ). The above formula provides a means to compute this probability density (up 115 

to a normalizing factor) given a probabilistic data generation model,  (   ) (called likelihood) 116 

and data-independent assumptions about the structure, encapsulated by the prior probability 117 

 ( ). 118 

 119 

In practice, our data generation model involves several parameters (called nuisance parameters) 120 

that are not known a priori (see below). Therefore, we include these parameters, collectively 121 

noted as  , in the Bayesian formulation, yielding: 122 

 (     )   (     ) (   )   (     ) ( ) ( ) 

where for the latter identity we assumed statistical independence of the genome structures G and 123 

the nuisance parameters  . 124 

 125 



We next assume that in absence of data, all possible genome structures and nuisance parameters 126 

are equally probable, i.e. that  ( ) and  ( ) are constants (flat priors). With these assumptions 127 

the Bayes rule reduces to: 128 

 (     )   (     ) 

 129 

To compute the likelihood  (     ) we need a data generation model that relates the contact 130 

frequencies measured by the Hi-C experiment to an assumed linear genome structure and the 131 

nuisance parameters.  132 

 133 

A.2. Notations and definitions for the genome structure G and the Hi-C data D: 134 

Before describing our model for  (     ) , we need a more formal definition of the variables G, 135 

and D. The parameters   will be defined in section A.1.3. 136 

 137 

Genome structure:  138 

First, we define G as an unordered set of N contigs   :  139 

  {           } 

If the genome is perfectly assembled, each contig corresponds exactly to a single chromosome. 140 

Hi-C reads are mapped to restriction fragments    defined by the restriction enzyme cutting sites. 141 

We therefore consider the restriction fragment    as the elementary units of a genome assembly. 142 

However, many operations performed by GRAAL are not applied to individual restriction 143 

fragments, but to ordered sets of p consecutive fragments, which we call 'bins' and note :  144 

   (             )  

Whenever possible, we choose      where    is a single user-defined constant typically set to 145 

3. However, if the number of restriction fragments in a contig is not a multiple of    , then some 146 

bins will consist of       fragments. 147 

We define a contig as an ordered sequence of bins, noted: 148 

   (   
     

        
 
 

  ) 

where    {          } is the set of all bins,    is the number of bins in contig    and    is 149 

an indexing function with   
  [       ]. The subscript in    is used to indicate that the bins 150 



rely on an initial assumed set of contigs   . We also introduce the two functions   ( ) and   ( ) 151 

such that: 152 

{
  (  

 )   

  (  
 )   

 

Next, we define   (     ) as the genomic distance (in units of base pairs) between two bins. This 153 

distance is obviously only defined for bins belonging to the same contig, i.e. for   ( )     ( ). 154 

For   ( )     ( ) we consider that   (     )   . 155 

 156 

Hi-C/3C-seq contact data:  157 

The chromosome contact data used by GRAAL are obtained after mapping the Hi-C/3C-seq 158 

reads to an initial set of fragments           . We define D as the matrix whose entries       159 

((   )  [        ]
 
) are the number of Hi-C3C-seq reads pair mapped to each pair of fragments 160 

(     ). Please note that, although the sampling algorithm of GRAAL (described below) 161 

manipulates the genome structure at the level of super-contigs, the likelihood will always be 162 

evaluated by considering the contact data at the resolution of individual fragments. 163 

 164 

 165 

A.3. Likelihood and nuisance parameters:  166 

We now need a means to relate the probability of the matrix D to the assumed linear genome 167 

structure G. Our first step is to relate the probability of each entry       to the contact probability 168 

between fragments    and   , which we note     . Since        results from a counting process, its 169 

probability can be modeled as a Poisson distribution: 170 

{
 (       )   oisson(      )  {

    
 

  
        for    

  otherwise
            

 

where    is the total number of independent counts. Although    is strictly speaking also a 171 

random number (which depends chiefly on sequencing depth and criteria used to validate the read 172 

pairs), for simplicity we treat it as a constant and simply set:    ∑ ∑     
  
   

  
   

. We further 173 

assume that contacts between distinct pairs of fragments are independent from each other, such 174 

that : 175 
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which implies: 176 

 ( )  ∏∏  oisson(            )

 

   

 

   

                                                    

In order to be able to calculate  (     ), we now need to relate the contact probabilities       to 177 

  and    178 

Contact probabilities are intimately dependent on how chromosomes are folded and positioned 179 

relative to each other. The detailed relationship between the 3D and 1D architecture of the 180 

genome is in general complex, depends on the organism and cell state, and is subject of much 181 

current research (e.g. 
4
). Nevertheless, some important features are present in all Hi-C/3C-seq 182 

data sets obtained so far, and are also in good agreement with predictions from polymer physics. 183 

Specifically, the contact probability      between loci on the same chromosome (cis contacts) 184 

decays as a power law with increasing genomic distances s (as expressed in bp). This relation 185 

holds up to a genomic distance    above which contact probabilities are approximately constant, 186 

i.e.:  187 

{
    ( )    (

 

  
)
 

     for        

    ( )                     for        

 

These relationships have been approximately verified in a number of different organisms, with 188 

variable values for b ,     and   , and can be recapitulated by computational simulations of 189 

polymer dynamics 
5–9

.  190 

The contact probabilities between loci on distinct chromosomes (trans contacts) are less 191 

amenable to simple theoretical predictions and arguably more sensitive to biological specificities 192 

such as organism and cell type. They are also on average much weaker than cis contact 193 

probabilities. For simplicity and generality, we therefore simply assume that trans contacts have 194 

the same probability as long-range cis contacts: 195 

          

Our probabilistic model is therefore characterized by only 3 parameters, collectively noted as  :  196 

  (       ). 197 



Because these parameters cannot reliably be predicted a priori, they will be sampled together 198 

with G as will be detailed below.  199 

 200 

With the equations above, we now have all ingredients to calculate  (     ): 201 

 202 

 (     )  ∏ ∏  oisson(            )
 
   

 
                                                      (Eq 1) 203 

 204 

with: 205 

 (        )   (  (   )        )  {
   (

  (   )
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     if      (   )    

                     otherwise
     (Eq 2) 206 

 207 

B. Sampling algorithm 208 

The above formulas allow us to compute the posterior probability of any assumed linear genome 209 

structure G (and the nuisance parameters  ) given D, a contact data set obtained by mapping 3C-210 

seq/Hi-C reads to an initial set of contigs.  In order to explore the entire probability density 211 

 (   ), we need a method to sample the extremely large (or infinite) space of possible linear 212 

genome structures. For this purpose, we implemented an algorithm inspired by the Markov-Chain 213 

Monte-Carlo (MCMC) Gibbs sampler. Starting from an initialization (     ) the algorithm 214 

makes a large number of random moves across the space (   ) to be sampled, and uses a 215 

probabilistic rule to accept or reject individual moves (     )  (         ). After a sufficient 216 

number of steps, once the chain has reached equilibrium, a subset of the accepted samples can be 217 

used to approximate the global maximum of the probability density  (   ). An overview of the 218 

algorithm's main modules is provided in . 219 

At each iteration, GRAAL updates first nuisance parameters    and then the genome structure   . 220 

Below, we separately describe first the initialization of      and      and then the update rules 221 

for    and   . 222 

 223 

 224 

 225 

 226 
 227 



B.1. Initialization of the genome,    228 

Different initializations can be considered for the initial set of contigs    depending on the 229 

availability of a preliminary assembly of the organism under study, or of a related genome. The 230 

initial set of contigs does not need to be perfect, since GRAAL can split and rearrange incorrectly 231 

assembled contigs. However, in our current implementation, the restriction fragments    and the 232 

bins     , whose definition depends on   , cannot be broken. In our paper, we considered the 233 

following different types of initializations: 234 

 The reference budding yeast genome (16 chromosomes; GCF_000146045.1) was used as 235 

validation data, since a high quality assembly of this genome is already available. In order 236 

to simulate an incomplete assembly of this genome, we split the genome into    1,086 237 

bins (of approximately 11Kb) to initialize GRAAL. 238 

 For YFK1246, the structural mutant of budding yeast
10

,    3,171 bins of 9 RFs (DpnII 239 

restriction enzyme) of the reference budding yeast genome were used to initialize 240 

GRAAL.  241 

 We also used this initialization to assemble the Malaysian budding yeast isolate 242 

(UWOPS03-461.4). 243 

 The Trichoderma genome (ATCC 13631)
11

 of strain QM6a was only partly assembled 244 

(including using long-insert paired-end data), yielding 77 scaffolds. Rather than 245 

initializing     with these scaffolds, those were split into bins of 81 RF, which led to 246 

        bins that were used to initialize GRAAL. 247 

 For the human chromosome 14, we downloaded the 4,722 contigs obtained from the 248 

ALLPATHS-LG de novo assembly (average siz e 20kb)12. A filter was applied to 249 

identify RFs (from the HindIII restriction enzyme used in the Hi-C experiment13) 250 

presenting little or no read coverage. If reads appears sparse along a RF compared to 251 

the  distribution of read coverage over the entire population of RFs, the RF was discarded. 252 

If the entire contig appeared undercovered, it was therefore discarded. A similar filtering 253 

step is used by dnaTri2. We then split the remaining 2,917 contigs into bins of 3 RFs. 254 

As a general strategy to complete the assembly of an imperfectly assembled genome, we 255 

recommend starting from the existing contigs and splitting them into bins as illustrated here for 256 

Trichoderma. The user of GRAAL has the option to choose whether to split these contigs or not 257 

(see section B). 258 



 259 

B.2. Initialization of the nuisance parameters,    260 

The initial values of the parameters    (       ) are obtained based on the Hi-C data D and 261 

the initial genome structure    as follows: 262 

First, the initial value of    is set to the contact probability averaged over all pairs of bins 263 

belonging to different contigs, i.e.: 264 

   
∑ (     ( )   ( ))       

∑ (     ( )   ( ))   

 

where        if i=j and        otherwise. 265 

Next, we construct a histogram of cis-contact frequencies with genomic intervals [        ], 266 

ranging from    0 to        (  )         the length of the longest contig in   . For each 267 

genomic bin [       ], the histogram reports the mean contact frequency, among all    contigs,  268 

between bins sharing a contig and separated by genomic distances   [       ]: 269 
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 where H is the Heaviside function ( ( )    for      and  ( )    otherwise) . We then 270 

estimate the initial values of    and   by least squares fitting of (Eq1) to   , i.e.: 271 

(    )=arg min ∑ (    (
 

 
(       )        ))

 
 
    272 

 This minimization is performed using a quasi-Newton method
12

. 273 

 274 

B.3. Monte Carlo modifications of the genome        :  275 

 276 

B.3.1. Virtual mutations:  277 

We will call 'virtual mutations' the random changes applied to the genome structure. GRAAL 278 

considers 5 different types of elementary virtual mutations and 4 composite mutations as detailed 279 

below. 280 

 281 

Elementary mutations:  282 

The 5 elementary mutations are defined as follows: 283 



 Split: this mutation splits a contig at a bin and is formally noted as  (   ), where i is the 284 

index of the bin   , and       indicates whether the split occurs to the left or right of 285 

the bin. As a result of this operation, contig    ( )  is replaced by two new contigs: 286 

{
 
 
 
 

 
 
 
 
{
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 new,left  (   
       

  
 )         if      

{
 new,right  (   

      
  
  )     if      

 new,right  (   
        

  
  )         if      

 new       ( )   new,left   new,right

 

 where (   )  (  ( )   ( )). 287 

 288 

 289 

 Paste: this mutation concatenates two contigs and is formally noted as  (     ), where k  290 

and l are the indices of the two contigs to be pasted, and      indicates whether or not 291 

contig    is flipped before pasting. As a result of this mutation, the two contigs     and    292 

are replaced by a single new  contig obtained by concatenating    (or it flipped version) to 293 

the right of   . Note that the orientation of the bins inside each contig are preserved.  294 
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 where the operator    (flipping a bin) is defined below. 295 

Split and paste are reciprocal operations, i.e. one mutation can reverse the effect of the 296 

other, such that:  (  
    

    )   (    )   (     )   (      )   , where   
  is the 297 

index of the contig resulting from the split operation that was originally to the left of bin 298 

   ,   
    ( ) is the index of the contig still containing    after the split,      is the 299 

leftmost bin of contig l, and   is the "null" mutation, which leaves the genome 300 

unchanged. 301 

 302 

 Duplicate: This mutation duplicates a bin    and is formally noted as  ( ). As a result of 303 

this mutation, a copy of fi is added to the current set of bins and a new contig consisting of 304 

this single bin is added to the current contig set : 305 

{
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 306 

 Delete: formally noted as  ( ), this mutation leads to the removal of bin fi from the 307 

current set of bins    and from the contig that contained it: 308 

{

 new    {   }

   new  (   
       

  
       

        
  
  ) 

 new    {   }     new

 

where (   )  (  ( )   ( )). 309 

 310 

 Flip: formally noted as  ( ), this mutation flips the orientation of bin fi in its containing 311 

contig.  312 

 313 

{
 
 

 
 

 
  
  new

 (                    )

 new    { 
  
  }  {   

 }

   new  (   
       

  
       

  new
  
  
        

 
 

  )

 new    {   }     new

 

 314 

where (   )  (  ( )   ( )). The reciprocal operation of a flip is itself:   ( )   ( )   . 315 
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 317 

Any complex alteration of the genome (defined at the resolution of bins) can be decomposed into 318 

a sequence of these five mutations          and  .  However, for complex structural changes 319 

such as translocations, the required sequence may be very long, and it might take unreasonable 320 

time for the sampler to achieve them using Monte Carlo moves. Therefore, we introduce the 321 

following composite mutations: 322 

 323 

Composite mutations:  324 

 Eject: this mutation, noted as  ( ), pops out bin  fi from its contig, and pastes together the 325 

two extremities flanking the bin, leaving fi  as a new contig. It is therefore a composite of 326 

two split and one paste mutations: 327 

 ( )   (  
    

    )   (    )   (    ) 

 where   
  and   

  are the indices of the contigs resulting from the two splits and originally 328 

located to the left and the right of bin fi.  329 

 330 
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 Insert: this mutation, noted as  (   ) inserts an isolated bin     (i.e. a contig consisting of a 332 

single bin) to the right of bin    into its contig    ( ). It is a composite of one split and 333 

two paste mutations: 334 

 (   )   (    )   (      )   (    ) 

 where      ( )    designates the bin immediately to the right of    within contig 335 

   ( ). Ejection and insertions are reciprocal operations, i.e. :  (   )   ( )   ( )  336 

 (   )   .  337 

 338 

 339 

 Translocate: this mutation mimics a biological translocation which swaps two parts of 340 

distinct chromosomes and is denoted as  (         ), where i and j designate the bin on 341 

the two contigs     ( ) and    ( )  to the right of which the translocation events take 342 

place, and where       and       indicate whether the two swapped regions are 343 

flipped or not. This operation is a composite of two split and two paste mutations: 344 

 (         )   (    
    )   (    

    )   (    )   (    ) 

 where      ( )    and      ( )    are the indices of the bin immediately to 345 

the right of    and   , respectively, on contigs    ( ) and    ( ).  346 
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 347 

 The reciprocal operation of a translocation is itself: 348 

 (         )   (         )    

 349 

 Jump: this mutation, noted  (   ), extracts bin    from its contig    ( ) and inserts it to 350 

the right of bin    on contig    ( ). It can be decomposed into an ejection followed by an 351 

insertion: 352 

 (   )   (   )   ( ) 
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 353 

 354 

These composite mutations can generate more complex and drastic alterations of genome 355 

structure in a single step, thereby allowing faster exploration of larger regions of structure space 356 

than the elementary mutations.  357 

 358 

We now introduce some notations that will be important for the following section. First, we call 359 

  {                 } the set of all 9 mutations and use the generic notation       360 

with   {        } for individual members of this set (for example,    is the paste mutation. We 361 

point out that each of the 9 mutations can be defined by either one (mutations          ) or 362 

two indices of bins (mutations  ,      )  and, for some mutations, one or two auxiliary binary 363 

parameters      . To formally note the parameters of an arbitrary mutation    in  , we can 364 

therefore use the notation:   (     ), where it is understood that j is relevant only for mutations 365 

 ,       and   corresponds to the auxiliary parameter, if relevant (e.g.    (     ) for     , 366 

  { } for     ). We call    the set of all possible values of the auxiliary parameter for 367 

mutation   . For example,    {(     ) (     ) (     ) (     )} . Finally, we note 368 

     ( ) the structure resulting from application of mutation    to the genome G.  369 

 370 

B.3.2. Multiple Try Metropolis updates of genome structure  371 

Now that we have defined the possible mutations, we explain how they are used to update 372 

genome structures. 373 
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In devising the sampling algorithm, we initially implemented a basic Metropolis-Hastings 374 

algorithm
12

. However, this led to very low acceptance rates of individual moves and excessive 375 

computation time. In order to accelerate the sampling, we therefore implemented a new algorithm 376 

based on a more sophisticated sampling strategy known as Multiple-Try Metropolis that 377 

evaluates several candidate moves at each step and has been shown to allow significantly 378 

improved computation times
13

. 379 

 380 

The canonical MTM method works as follow: 381 

 382 

1. Randomly pick one bin    by choosing a random integer i between 1 and N (the current 383 

number of bins) with uniform probability. 384 

2. Next, randomly pick a number K of distinct bins (  )       with       . In contrast to the 385 

first bin    , however, these bins are not drawn with uniform probability, but with a 386 

probability: 387 

  ( )  
    

∑       [   ]     

 

As a consequence, the sampled bins     tend to have high contact probability with     and 388 

are therefore likely to be located in close linear proximity vicinity on the same 389 

chromosome.  390 

3. Consider the set   of all candidate genome structures    obtained by separately 391 

applying each of the 9 mutations    to the current genome structure    with all possible 392 

values of the auxiliary parameters, i.e.:  393 

  (  )  {  (     )(  )    [   ]   [   ]     } 

Among all structures in this set, we pick a random subset of    structures (with uniform 394 

probability): 395 

    {           } 

For each of these candidate structure, we evaluate the likelihood  (  )   (       ) 396 

using equations 1 and 2. Note that the nuisance parameters are held constant (they are 397 

updated separately as described in section A.2.4).  398 

4. For each candidate structure      (     )(  ), we define: 399 



 (     )    (  ) (     ) 

 where the proposal function T is chosen as: 400 

 (     )    ( ) 

5. Among the    proposed candidate structures, we select one, called   with probability 401 

proportional to 402 

 (    )   ( ) (    )   ( )  ( ) 

6. We note j the index of the bin    that led to this structure     (     )(  ). We then 403 

randomly pick another set of K bins   , with probability   ( ) and define a new set of 404 

genome structures : 405 

   (  
 )  {  (     )( )    [   ]   [   ]     } 

 Among this set, we randomly pick (with uniform probability)      structures. 406 

     
  {  

            
 } 

7. Finally, we compute the generalized Metropolis-Hastings acceptance ratio as: 407 

  min {  
 (     )   (     )      (      )

 (  
   )      (     

   )   (   
   )

} 

 With probability r, we accept the new structure   and set        . In case of rejection, 408 

we set:          409 

  410 

However, in order to lower the computing load of the process we implemented an alternative 411 

version of the algorithm. At step 5, we set      =   and therefore skip steps 6 and 7. The 412 

resulting random process is no longer a time homogeneous Markov chain, but the efficiency of 413 

this strategy is experimentally verified.  414 

 415 

B.4. Monte Carlo updates of the nuisance parameters        :  416 

The nuisance parameters are updated as follows: 417 

First, we randomly pick one of the three parameters with equal probability 1/3, i.e. we choose 418 

  {       }. Second, we consider a new candidate value for this parameter by addition of a 419 

normally distributed random variable: 420 

            with         (    ) 421 



We chose to set the variance of the parameter change to a small fraction of the initial value: 422 

     
       . This choice was made because of the high sensitivity of the likelihood to small 423 

variations of the parameters.  424 

We note    the new candidate set of parameters obtained by replacing parameter   by    in   . 425 

Next, we accept this candidate with probability: 426 

  min(  
 (      

 )

 (      )
) 

where the ratio of likelihoods on the right is computed using Eqs 1 and 2.  427 

If this move is accepted, we set:        
 , otherwise we keep:          . 428 

 429 

 430 

B.5. Sampling from the Markov chain:  431 

Starting from the initialization of    and    as defined in A.2.1 and A.2.2, we let the Markov 432 

moves update    and     under the rules specified in sections A.2.3 and A.2.4 for a total number 433 

of iterations  max  In order to approximate the probability distribution  (     ), we discard all 434 

samples obtained during an initial burn-in period specified by a number of iterations  burn-in and 435 

use all samples thereafter, i.e. we use (     ) with  burn-in     max.  We chose  max  and 436 

 burn-in depending on   , the number of restriction fragments in the Hi-C data set D.  Typically 437 

used values are:  burn-in       and  max       . 438 

 439 

B.6. Metrics 440 

We use different metrics to quantify assembly quality or otherwise characterize the sampled 441 

structure probability density.  442 

 i r( contigs) : One simple way to measure the variability among the sampled structures is 443 

to measure the variability of contig number. Here, we use the interquartile range (i.e. the 444 

difference between the 75% and the 25% percentiles) of the number of contigs in the 445 

structure samples   (  
burn-in

        max
). 446 

 Error: In order to quantify the quality of assembly on a known genome, we define an error 447 

measured as follows: we examine the position of each bin   ,         and ask if its 448 

immediate flanking neighbors and its orientation are correct. Depending on the answer, 449 



we attribute a bin error    {       } , where      if both neighbors and orientation are 450 

correct, and      if all are incorrect. We then define the total normalized error as 451 

  
∑   
  
   

   
. The normalization ensures that        A perfect assembly (at the level of 452 

bins) yields    . Note that this measure is quite sensitive to assembly errors, since any 453 

displacement of a bin from its true position (irrespective of the magnitude of this 454 

displacement) and any incorrect orientation will increase E.  455 

 456 

 457 

  458 
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